Wastewater Pump Intake Designs

Conventional and Self Cleaning Wetwells
Topics

• Clear liquid intake design review
• Solids-bearing liquid intake design
 • Self Cleaning designs
• Effective Operation and Control
Clear Liquids – HI 9.8.1 & 2

- Limit Surface Vortices
- Limit Approach Velocity
- Generalized Dimensions

“D” = f(Flow)
Clear Liquids – HI 9.8.1 & 2

- Limit Surface Vortices
- Limit Approach Velocity
- Generalized Dimensions
- “D” = f(Flow)
- “S” = f(Flow)
Bell Sizing – HI 9.8.25B

- V = 2.0 ft/s
- V = 3.0 ft/s
- V = 5.5 ft/s
- Recommended
- V = 8.0 ft/s
- V = 9.0 ft/s
Submergence – HI 9.8.26B

Bell D for 2.0 ft/s
Bell D for 3.0 ft/s
Bell D for 5.5 ft/s
Bell D for 8.0 ft/s
Bell D for 9.0 ft/s

S = Submergence, inches

Q = Flow, gpm
Duplex Circular Wetwell – HI 9.8.4A

• Limit Surface Vortices
• Limit Approach Velocity
• Generalized Dimensions
 • “D” = f(Flow)
 • “S” = f(Flow)
Duplex Circular Dry Pit – HI 9.8.4C

- Limit Surface Vortices
- Limit Approach Velocity
- Generalized Dimensions
 - “D” = f(Flow)
 - “S” = f(Flow)
Solids-bearing Liquids - Considerations

- Where possible, adhere to clear liquid layout
- Add features to minimize solids accumulation
 - Minimize horizontal surfaces
Duplex Circular Dry Pit – HI 9.8.15

- Steep and large corner fillets
- Minimized horizontal surfaces
- Suction bell clearance at tight end of range (.30 to .40 x D)

Figure 9.8.15 — Circular wet pit with sloping walls and minimized horizontal floor area (submersible pumps shown for illustration)
Cleaning Cycle Description

• “Removal of settled solids is effected each time a pump is activated, but removal of floating solids can only be accomplished when the liquid surface is at a minimum and the pump intake submergence is low enough to create a strong vortex.”
Cleaning Cycle Description

• “Removal of settled solids is effected each time a pump is activated, but removal of floating solids can only be accomplished when the liquid surface is at a minimum and the pump intake submergence is low enough to create a strong vortex.”

• Do we think it really works?
‘Cleaning Cycle’ Reality

- Example - 1000 GPM at 40’ (6” Sub Non-Clog)
- Db = 22” Volute
- Ds = 72” Wetwell ID
- Cf = 8”
- Assume constant speed fill and draw at 800 GPM inflow (dV/dt = 200 GPM)
- Level above fillet top – 204 Gallons per foot, or approximately 1 foot per minute drawdown
‘Cleaning Cycle’ Reality

- Example - 1000 GPM at 40’ (6” Sub Non-Clog)
- Db = 22” Volute
- Ds = 72” Wetwell ID
- Cf = 8”
- Assume constant speed fill and draw at 800 GPM inflow (dV/dt = 200 GPM)
- Level half way down slope – 72 Gallons per foot, or approximately 1 foot drawdown every 21 seconds
‘Cleaning Cycle’ Reality

- Example - 1000 GPM at 40’ (6” Sub Non-Clog)
- Db = 22” Volute
- Ds = 72” Wetwell ID
- Cf = 8”
- Assume constant speed fill and draw at 800 GPM inflow (dV/dt = 200 GPM)
- Level approaching vortex break – 30 Gallons per foot, or approximately 1 foot drawdown every 8 seconds.
‘Cleaning Cycle’ Reality

- Example - 1000 GPM at 40’ (6” Sub Non-Clog)
- Db = 22” Volute
- Ds = 72” Wetwell ID
- Cf = 8”
- Assume constant speed fill and draw at 800 GPM inflow (dV/dt = 200 GPM)
- Level approaching vortex break – 30 Gallons per foot, or approximately 1 foot drawdown every 8 seconds.
- Due to varying section, drawdown rate accelerates rapidly
‘Cleaning Cycle’ Reality

• Sloped wetwells in general do not provide effectively cleaning action as the high velocity mode of operation is transient in nature.
‘Cleaning Cycle’ Reality

• Confined Inlet style wetwells suffer from same limitations
• Baffle wall results in solid settling in lag pump basin, ‘slugging’ lag pump when lead / lag control alternates
Trench Wetwell for Solids-bearing liquids

Trench-Type Wet Well

- Transition from circular to rectangular recommended, see Section 9.8.3.2.3.1
- Anti-rotation baffle (protude as far as practical)
- 0.3 m/s (1.0 ft/s) max velocity above trench
- \(r \geq 2.33 \times \text{head on sluice gate (2D min)} \)
- \(\varepsilon \geq 45^\circ \) for smooth surface (plastic lining)
- \(\varepsilon \geq 60^\circ \) for concrete
- \(s \geq (1+2.3F_b)D \)
Trench Wetwell for Solids-bearing liquids

- High velocity flow down ogee
- Floatables are entrained into flow stream
- Solids pushed to cleaning pump
Trench Wetwell for Solids-bearing liquids

Fluid momentum allows cleaning pump to maintain prime continuously while wetwell operates in high velocity mode.
Trench Wetwell for Solids-bearing liquids

Hydraulic jump formed

Cleaning pump still operating
Trench Wetwell for Solids-bearing liquids

• Ideally suited for vertical column solids handling pumps
 (Fairbanks Morse VTSH, etc)
Trench Wetwell for Solids-bearing liquids

• Pull up submersibles with suction extension
• Dry pit / Wet pit with suction bells
Trench Wetwells - Cautions

• For very high capacity installations, follow updated intake design guidelines, or specify a hydraulic model study
• Do no underestimate control challenges
• Manual cleaning is always superior
What is the WEMCO-Hidrostal Prerostal System?

• A self cleaning, flow matching waste water intake/wetwell system

• Prerostal performance is achieved when an immersible screw centrifugal non clog pump is utilized within an engineered tangential intake wetwell

• Provides a passive self cleaning intake system, which effectively eliminates both floating scum/grease blankets and heavier solids which settle to sump bottom.
WEMCO-Hidrostal Prerostal

- Prerostal Video
How Does The Prerostal Work?
Hidrostat pumps incorporate the unique screw centrifugal impeller designed to deliver real benefits to pump users

- Viscous handling for pumping thick & viscous liquids
- Low shear pumping for sensitive liquids
- Delicate handling for pumping delicate materials
- Solids handling for pumping solids laden liquids without blockages
Solids Handling Centrifugal Impeller

- Single or two vane impeller
- Large port passages
- Thick rounded vanes
- Still prone to ragging at vane tip and shroud intersection (no escape path)
Solids Handling Centrifugal Impeller

- Single or two vane impeller
- Large port passages
- Thick rounded vanes
- Still prone to ragging at vane tip and shroud intersection (no escape path)
Current Generation Solids Handling Centrifugal Pumps

• Lower shroud is omitted, resulting in a semi-open impeller configuration

• Impeller and lower liner are designed to push rags and stringy material outward to end of impeller vane tips, and through to volute

• Passage of stringy material is improved, but vane tip wear results.
WEMCO-Hidrostal Screw Centrifugal Impeller
System Components

- Tangential Flow Inlet Basin
- Submersible/Immersible Hidrostal Screw Centrifugal Pump with Inlet Bell
Benefits

• Self cleaning action
• Floatables are gently folded into the suction of the pump
• Reduced odor and gas
• Eliminates difficult and costly cleaning of wet wells
• **Passive** flow matching maximizes self cleaning cycle time
Principle of Operation

- The tangential inlet well design changes the intake flow characteristic based on wet well level.
- At lower wetwell levels, increased tangential channel velocity and potential energy transfer increases rotation, and cleaning action.
- At higher rotational speeds, impeller inlet angle changes, altering the flow rate of the pump.
1. No pre-rotation
2. Pump operates on published curve
3. No virtual head

Delta H = 0
Excellent Power & Industrial Solutions

Weir Specialty Pumps

WEMCO PREROSTAL
Maximum Inflow

Pump operates at published design
1. Flow forced through entrance channel
2. Virtual head creates rotation of fluid
3. Partial pre-rotation
4. Pump capacity decreases
WEMCO PREROSTAL
Medium Inflow
WEMCO PREROSTAL
Minimum Inflow

1. Maximum virtual head in pre-rotation basin
2. Maximum rotation of fluid
3. Maximum reduction in pump capacity
WEMCO PREROSTAL
Minimum Inflow

Graph showing the relationship between RPM and capacity.
WEMCO-Prerostal Configurations – Wet Pit Pull Up

- **Liquid Level Probe** (by others)
- **Pump Removal Hatch**
- **Control Cable Motor Leads**
- **Upper Bracket**
- **Lifting Cable**
- **Guide Rails**
- **Discharge Piping** (by others)
- **Discharge 4" Class 150 Flange**
- **Low Water Elev.** to be set at pump start up by authorized field rep.
- **Pre-Rotation Basin**
WEMCO-Prerostal Configurations – Dry Pit
WEMCO-Prerostal Configurations – Enhanced Trench

Trench-Style Enhanced With Prerotation

This enhanced design uses the trench and ogee ramp, but completely eliminates the need to store fluid in the inlet system. It avoids the cost of the sluice gate/valve, any automation or electronics, and the trained operator to run it through its “self-cleaning” cycle. Instead, the Prerotation system automatically cleans the wet-wall, at least daily, without any costly equipment or operator attention.

In this system, the last pump is replaced by a “prerotation basin” and HiDrastal screw centrifugal pump. This system both automatically cleans the wet-wall every time there is a low flow cycle, and matches the flow of the sump when in its Prerotation cycle.
Thank you

Questions…